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EOARD/AFOSR Final Report 

Infrared Superconducting Single-Photon Detectors 

Dr Robert Hadfield, Heriot-Watt University, UK, 5
th

 October 2012 

SUMMARY 

This report describes research work carried out at Heriot-Watt University, Edinburgh, UK enabled by 

support from the EOARD from September 2011 – October 2012.  This research was concerns a new 

type of infrared single-photon detector, the superconducting nanowire single-photon detector, which 

offers low noise, high timing resolution, infrared single photon sensitivity, and holds promise for a 

wide range of applications, from optical quantum information science to new methods of medical 

imaging.   Specific accomplishments include (1) development of fabrication capability for 

superconducting nanowires, (2) exploration of a novel device concept for an infrared photon counting 

camera and (3) low (sub Kelvin) testing capability for nanowires based on amorphous 

superconducting materials.   An outlook on future research avenues is also given. 

1. BACKGROUND 

1.1 Research Field: Superconducting nanowire single photon detectors 

Infrared single photon detection in a superconducting nanowire was demonstrated a decade ago [1].  

The basic superconducting nanowire single photon detector (SNSPD) device is a narrow (100 nm) 

wire fabricated from an ultrathin superconducting film (typically niobium nitride, NbN).  The wire is 

cooled below the superconducting transition temperature and biased just below the critical current 

(the point where it will switch into the resistive state).  A photon impinging on the wire will create a 

resistive hotspot, perturbing the current distribution and triggering an output voltage pulse.  Since 

the initial demonstration, device designs have evolved rapidly [2], leading to increased active areas 

suitable for coupling with optical fibre [3] , enhanced efficiency through the use of optical cavities 

[4,5], and demonstration of multipixel nanowire devices.  SNSPDs offer superior signal-to-noise to 

conventional off-the-shelf infrared photon counters such as InGaAs single photon avalanche diodes 

[6,7].  SNSPDs have been implemented into practical detector systems [8], and have been employed 

in groundbreaking experiments in optical quantum information science, including world record 

quantum cryptography demonstrations [9] and operation of quantum waveguide circuits at telecom 

wavelengths [10].  Beyond the quantum arena, SNSPDs are also under consideration for applications 

such as integrated circuit testing [11], time of flight ranging [12] and fibre temperature sensing [13].   

A new generation of SNSPDs are eagerly awaited: increased detection areas and high practical 

efficiency in the mid-infrared are particularly sought after attributes. 
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1.2 Research Environment at Heriot

The PI, Dr Robert Hadfield, arrived at Heriot

postdoctoral period at the US National Institute of Standard of Technology in Bou

has rapidly built up a suite of facilities for low temperature i

capabilities include a low temperature miniature confocal microscope with p

nanopositioners enabling mapping of device properties with sub

under the Scottish Universities Physics Alliance SUPA II funding initiative Heriot

acquired a Raith Pioneer electron beam litho

managed by the PI.  This high performance nanofabrication instrument

fabrication of superconducting nanowire single photon detectors for the first time.

 

2. KEY ACCOMPLISHMENTS 

2.1 Fabrication of superconducting nanowires at Heriot

The EOARD funding award was a major boost to superconducting device fabrication efforts at 

Heriot-Watt University.  Although equipment has been in place since 2010, manpower to initiate 

device fabrication and process optimisation has been absent.  The PI seized the opportunity to 

employ Dr Alessandro Casaburi (formerly of CNR

device fabrication efforts at Heriot

device fabrication and testing experience.  Dr Casaburi joined the group in May 2012, and has rapidly 

moved forward in initiating device patterning and testing. Examples of his work are shown in Figure 

2.  The microstrip devices tested so far give promi

bright optical pulses.  In the next fabrication iteration 

 

Figure 1 (left to right): superconducting nanowire single photon detector (SNSPD) device concept.  

Large area cavity enhanced SNSPD suitable for fibre coupling [5].  Nano

Heriot-Watt University. 

at Heriot-Watt University 
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has rapidly built up a suite of facilities for low temperature infrared testing SNSPDs

capabilities include a low temperature miniature confocal microscope with p

nanopositioners enabling mapping of device properties with sub-micrometre precision

under the Scottish Universities Physics Alliance SUPA II funding initiative Heriot

acquired a Raith Pioneer electron beam lithography system.  This system was commissioned and co

This high performance nanofabrication instrument will enable in

fabrication of superconducting nanowire single photon detectors for the first time.

 

superconducting nanowires at Heriot-Watt University 

The EOARD funding award was a major boost to superconducting device fabrication efforts at 

Watt University.  Although equipment has been in place since 2010, manpower to initiate 

and process optimisation has been absent.  The PI seized the opportunity to 

employ Dr Alessandro Casaburi (formerly of CNR-Naples, Italy and AIST, Tskuba, 

device fabrication efforts at Heriot-Watt.  Dr Casaburi has over 8 years of superconducting nanowire 

device fabrication and testing experience.  Dr Casaburi joined the group in May 2012, and has rapidly 

moved forward in initiating device patterning and testing. Examples of his work are shown in Figure 

d so far give promising current voltage characterist

bright optical pulses.  In the next fabrication iteration (scheduled for mid October 2012) 

 
left to right): superconducting nanowire single photon detector (SNSPD) device concept.  

Large area cavity enhanced SNSPD suitable for fibre coupling [5].  Nano-optical testing capability at 

2 

having spent a highly successful 

at the US National Institute of Standard of Technology in Boulder, Colorado.  He 
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capabilities include a low temperature miniature confocal microscope with piezoelectric 

micrometre precision [14].  In 2009, 

under the Scottish Universities Physics Alliance SUPA II funding initiative Heriot-Watt University 

graphy system.  This system was commissioned and co-

will enable in-house 

fabrication of superconducting nanowire single photon detectors for the first time. 

The EOARD funding award was a major boost to superconducting device fabrication efforts at 

Watt University.  Although equipment has been in place since 2010, manpower to initiate 

and process optimisation has been absent.  The PI seized the opportunity to 

 Japan) to accelerate 

erconducting nanowire 

device fabrication and testing experience.  Dr Casaburi joined the group in May 2012, and has rapidly 
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will narrow the linewidth to below 100 nm.  This should enable us to enter the si

detection regime in the infrared (photon energies below 1 eV)

 

2.2 Towards an infrared photon counting camera

Recent studies by the PI and his

[14].  Using nano-optical testing techniques the team

microscopic precision and tens of picoseconds timing resolution

(efficiency, timing jitter, output pulse delay) of SNSPD devices

non uniformity in the nanowire leads to varying hotspot resistance, leading t

variations in output pulse timing (on 

Mike Tanner to design new SNSPD devices aimed at exploiting this effect.  Figure 3 shows a 

prototype SNSPD ‘camera’ device.   The device consis

increase in length left to right.  This means that the hotspot can only grow up to the length of the 

segment.  The hotspot resistance should vary along the wire leading to a measurement variation in 

output pulse timing delay.  The EOARD funding allowed the PI

to achieve the lowest possible timing jitter.  The best results achieved so far [15]: via a statistical 

measurement we can clearly show whether light is focussed on on

other.  In future we hope to achieve single shot discrimination between different regions of the 

device.  In this way we aim to create a SNSPD device with spatial sensitivity in one or two 

dimensions, suitable for use as a

 

 

Figure 2: Superconducting test devices fabricated at Heriot

Casaburi, summer 2012.  Left: Scanning electron micrograph images of microscopic wires; Right: 

Current-voltage characteristic measured at 4 K showing superconducting behavi

 

will narrow the linewidth to below 100 nm.  This should enable us to enter the si

in the infrared (photon energies below 1 eV). 

Towards an infrared photon counting camera 

Recent studies by the PI and his group have given new insights into the devic

optical testing techniques the team have performed local mapping (with 

and tens of picoseconds timing resolution) of the performance characteristics 

(efficiency, timing jitter, output pulse delay) of SNSPD devices.  These measurements

uniformity in the nanowire leads to varying hotspot resistance, leading t

variations in output pulse timing (on tens of picoseconds timescales).  This discovery inspired Dr 

to design new SNSPD devices aimed at exploiting this effect.  Figure 3 shows a 

prototype SNSPD ‘camera’ device.   The device consists of a single meander wire, but the segments 

increase in length left to right.  This means that the hotspot can only grow up to the length of the 

segment.  The hotspot resistance should vary along the wire leading to a measurement variation in 

y.  The EOARD funding allowed the PI to purchase ultra low noise amplifiers 

to achieve the lowest possible timing jitter.  The best results achieved so far [15]: via a statistical 

measurement we can clearly show whether light is focussed on one end of the camera device or the 

other.  In future we hope to achieve single shot discrimination between different regions of the 

device.  In this way we aim to create a SNSPD device with spatial sensitivity in one or two 

dimensions, suitable for use as a photon counting spectrometer or camera. 

Superconducting test devices fabricated at Heriot-Watt University by Dr Alessandro 

Casaburi, summer 2012.  Left: Scanning electron micrograph images of microscopic wires; Right: 

voltage characteristic measured at 4 K showing superconducting behaviour.
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(c) 

 

 

(d) 

 

(e)                                                           (f) 

 

Figure 3 : (a) variations in hotspot resistance leading to (b) variations in output pulse timing [14]; (c) 

scanning electron micrograph of ‘camera’ device uniform wire width but varying segment length 

(central slim triangular region) ; (d)-(f) first results, showing variation in output pulse timing from one 

side of the ‘camera’ SNSPD to the other [15]. 
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2.3 Testing capability for low energy gap

Recent work by groups in the at NIST, USA

energy gap superconducting materials WSi and NbSi hold promise for mid infrared single p

detection.  These superconducting materials are am

range of substrates than more commonly used NbN.  The lower superconducting energy gap implies 

that a nanowire device will have a higher triggering 

photon. The main drawback of these materials is the reduced superconducting transition 

temperature, necessitating sub Kelvin operating temperature. The EOARD award enabled the PI to 

invest in infrastructure for sub Kelvin device testing for the first time.  A novel solution was chosen: a 

closed cycle 
3
He stage (a bespoke item manufactured by Chase Cryogenic

added to a pulse tube closed cycle cold head (3

temperature of 300 mK.  The PI and his team (PhD student Peter Saxton) d

accommodate the 
3
He stage.  This flexible design enables operation of both fibre coupled and 

miniature microscope coupled superconducting de

 

 

Figure 4: Sub Kelvin superconducting device testing capability.  Left: 3He closed cycle stage (Chase 

Cryogenic, UK Right: Full cryostat design for 

temperature 300 mK. 

 

for low energy gap superconductors for improved mid IR

ecent work by groups in the at NIST, USA [16] and TU Delft, the Netherlands [17]

energy gap superconducting materials WSi and NbSi hold promise for mid infrared single p

detection.  These superconducting materials are amorphous and can tolerate deposition on a wider 

range of substrates than more commonly used NbN.  The lower superconducting energy gap implies 

that a nanowire device will have a higher triggering probability on absorption of a mid infrared 

photon. The main drawback of these materials is the reduced superconducting transition 

ating sub Kelvin operating temperature. The EOARD award enabled the PI to 

ub Kelvin device testing for the first time.  A novel solution was chosen: a 

He stage (a bespoke item manufactured by Chase Cryogenic, UK).  This 

added to a pulse tube closed cycle cold head (3 K base temperature) to achieve 

temperature of 300 mK.  The PI and his team (PhD student Peter Saxton) designed a full cryostat to 

He stage.  This flexible design enables operation of both fibre coupled and 

miniature microscope coupled superconducting devices. 

 

Sub Kelvin superconducting device testing capability.  Left: 3He closed cycle stage (Chase 

Cryogenic, UK Right: Full cryostat design for 
3
He stage mounted on pulse tube cooler, target base 
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 sensitivity 

[17] indicates that low 

energy gap superconducting materials WSi and NbSi hold promise for mid infrared single photon 

ous and can tolerate deposition on a wider 

range of substrates than more commonly used NbN.  The lower superconducting energy gap implies 

probability on absorption of a mid infrared 

photon. The main drawback of these materials is the reduced superconducting transition 

ating sub Kelvin operating temperature. The EOARD award enabled the PI to 

ub Kelvin device testing for the first time.  A novel solution was chosen: a 

UK).  This 
3
He stage can be 

K base temperature) to achieve a base operating 

esigned a full cryostat to 

He stage.  This flexible design enables operation of both fibre coupled and 

 

Sub Kelvin superconducting device testing capability.  Left: 3He closed cycle stage (Chase 

He stage mounted on pulse tube cooler, target base 
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At the time of writing, we are waiting on the completion of cryostat parts from the Heriot-Watt 

University Workshop.  We anticipate assembly and testing of the cryostat  in early 2013.  The PI will 

visit Dr Sae Woo Nam’s group at the US National Institute of Standards and Technology in Boulder, 

Colorado, USA to learn techniques for 
3
He stage operation. 

 

3. DISSEMINATION 

The research work in this report is very recent and is principally in preparation for publication [15].  

Since August 2011 the PI has published 7 original papers in refereed journals (1 Physical Review 

Letter, 1 New Journal of Physics, 1 Applied Physics Letter, 2 Optics Express).  In addition PI and his 

team completed a major topical review for the journal Superconductor Science and Technology 

entitled ‘Superconducting nanowire single-photon detectors: physics and applications’ [2].  This is 

the first major review on this field; downloaded >1200 times in the first 3 months since publication. 

The funding from EOARD enabled the following conference presentations: 

• European Applied Superconductivity Conference (EUCAS 2011) The Hague, The Netherlands, 

September 2011 

• Nanowire Superconducting Single Photon Detector Conference, Eindhoven, The 

Netherlands, September 2011 (invited) 

• Quantum Science Symposium, Boston, USA September 2011 (invited) 

The PI also delivered several webcasts on infrared counting technologies: 

• National Science Foundation Detector Virtual Workshop, Rochester Institute of Technology, 

USA, September 2011. 

• Laser Focus World Webcast February 2012 

 

 

4. OUTLOOK 

The next year will bring many fresh opportunities.  The PI has accepted the position of Professor of 

Photonics at the University of Glasgow, UK.  This will give the PI access to the arguably the UK’s best 

University nanofabrication facility (the James Watt Nanofabrication Centre).  The PI will be able to 

invest for the first time in state-of-the-art sputter deposition equipment, allowing ultrathin 

superconducting film deposition on substrates up to 3” diameter.  This will enable integration of 

superconducting detectors with integrated waveguide circuits (using well established processes in 

Glasgow).  This is a boost with the PI’s newly awarded UK Engineering and Physical Research Council 

projects: “Semiconductor integrated quantum optical circuits” (in collaboration with the University 
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of Sheffield, UK; PI Professor Maurice Skolnick) and “Lithium niobate integrated quantum photonics” 

(in collaboration with the University of Bristol, UK; PI Professor Jeremy O’Brien).    
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Figure 5: Upcoming projects. Left GaAs quantum optical circuit with integrated quantum dot single 

photon source and detector (concept U Sheffield/HWU) Right Waveguide integrated superconducting 

nanowire single photon detector (concept HWU/U Bristol) 
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